我在尝试实现近端策略优化时,遇到了一个非常奇怪的问题。
以下是问题的简化演示:
import numpy as npimport tensorflow as tfraw_probs = tf.get_variable("raw_probs",[4])probs = tf.nn.softmax(raw_probs)actions = tf.placeholder(dtype=tf.int32, shape=[None], name='actions')rewards = tf.placeholder(dtype=tf.float32, shape=[None], name='rewards')old_probs = tf.placeholder(dtype=tf.float32, shape=[None], name='old_probs')new_probs = tf.reduce_sum(probs * tf.one_hot(indices=actions, depth=4))ratios = new_probs / old_probsclipped_ratios = tf.clip_by_value(ratios, clip_value_min=0.8, clip_value_max=1.2)loss_clip = -tf.reduce_mean(tf.minimum(tf.multiply(rewards, ratios), tf.multiply(rewards, clipped_ratios)))optimizer = tf.train.AdamOptimizer()train_pol = optimizer.minimize(loss_clip)with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): input_actions = [] input_rewards = [] input_old_probs = [] for j in range(20): tmp_probs = sess.run(probs) if j == 0: print(tmp_probs) act = np.random.choice(4,p=tmp_probs) input_actions.append(act) if act == 0: input_rewards.append(1) else: input_rewards.append(-1) input_old_probs.append(tmp_probs[act]) sess.run(train_pol,feed_dict={actions: input_actions,rewards: input_rewards,old_probs: input_old_probs})
程序根据概率分布抽取数字。如果抽到0,则获得1的奖励;如果抽到其他数字,则获得-1的奖励。接着,程序会根据结果调整概率。
理论上,选择0的概率应该始终增加,最终收敛到1。但在实际操作中,这个概率却在下降。
我在这里做错了什么?
回答:
我解决了!我对reduce_sum
的效果理解得不够透彻。
只需将
new_probs = tf.reduce_sum(probs * tf.one_hot(indices=actions, depth=4))
改为
new_probs = tf.reduce_sum(probs * tf.one_hot(indices=actions, depth=4),1)