我正在努力让我的分层洗牌分割正常工作。我有两组数据,features
和 labels
,我想返回一个名为 results
的列表,其中应该包含所有准确率/精确率/召回率/F1 分数的列表。
然而,我觉得我只是在如何返回结果方面感到困惑和迷茫。有人能发现我在这里做错了什么吗?
from sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.naive_bayes import GaussianNBfrom sklearn.ensemble import AdaBoostClassifierfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import StratifiedShuffleSplitfrom sklearn.metrics import make_scorer, accuracy_score, precision_score, recall_score, f1_score,confusion_matrixsss = StratifiedShuffleSplit(n_splits=1, random_state=42, test_size=0.33)clf_obj = RandomForestClassifier(n_estimators=10)scoring = {'accuracy' : make_scorer(accuracy_score), 'precision' : make_scorer(precision_score), 'recall' : make_scorer(recall_score), 'f1_score' : make_scorer(f1_score)}results = cross_validate(estimator=clf_obj, X=features, y=labels, cv=sss, scoring=scoring)
我想让我感到困惑的是,我收到了这个错误:
ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
但我不明白我的 x 和 y 值发生了什么。我能看到的第一个错误似乎与 scoring
参数有关:
---> 29 scoring=scoring)
… 但据我所见,我认为我已经正确填写了 cross_validate()
函数的参数?
完整的错误跟踪:
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-27-2af4c433ccc9> in <module> 27 y=labels, 28 cv=sss,---> 29 scoring=scoring)/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score) 238 return_times=True, return_estimator=return_estimator, 239 error_score=error_score)--> 240 for train, test in cv.split(X, y, groups)) 241 242 zipped_scores = list(zip(*scores))/anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable) 915 # remaining jobs. 916 self._iterating = False--> 917 if self.dispatch_one_batch(iterator): 918 self._iterating = self._original_iterator is not None 919 /anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator) 752 tasks = BatchedCalls(itertools.islice(iterator, batch_size), 753 self._backend.get_nested_backend(),--> 754 self._pickle_cache) 755 if len(tasks) == 0: 756 # No more tasks available in the iterator: tell caller to stop./anaconda3/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py in __init__(self, iterator_slice, backend_and_jobs, pickle_cache) 208 209 def __init__(self, iterator_slice, backend_and_jobs, pickle_cache=None):--> 210 self.items = list(iterator_slice) 211 self._size = len(self.items) 212 if isinstance(backend_and_jobs, tuple):/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py in <genexpr>(.0) 233 pre_dispatch=pre_dispatch) 234 scores = parallel(--> 235 delayed(_fit_and_score)( 236 clone(estimator), X, y, scorers, train, test, verbose, None, 237 fit_params, return_train_score=return_train_score,/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py in split(self, X, y, groups) 1313 """ 1314 X, y, groups = indexable(X, y, groups)-> 1315 for train, test in self._iter_indices(X, y, groups): 1316 yield train, test 1317 /anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_split.py in _iter_indices(self, X, y, groups) 1693 class_counts = np.bincount(y_indices) 1694 if np.min(class_counts) < 2:-> 1695 raise ValueError("The least populated class in y has only 1" 1696 " member, which is too few. The minimum" 1697 " number of groups for any class cannot"ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any class cannot be less than 2.
回答:
错误消息实际上已经说明了一切:
ValueError: y 中最少的类别只有 1 个成员,太少了。任何一个类别的最小分组数不能少于 2。
你可能在你的 y
中有一个只有一个样本的类别,因此任何分层分割实际上都是不可能的。
你可以做的就是从你的数据中删除那个(单个)样本 – 无论如何,仅由单个样本代表的类别对分类没有任何用处…