我在Linux平台上使用Keras训练了一个回归模型,并使用model.save_weights("kwhFinal.h5")
保存了模型
然后我希望将完整的保存模型转移到Windows 10笔记本电脑上的Python 3.6环境中,并在IDLE中使用它:
from keras.models import load_model# 加载权重到新模型中loaded_model.load_weights("kwhFinal.h5")print("Loaded model from disk")
但是我遇到了Keras的只读模式ValueError错误。我通过pip
在Windows 10笔记本电脑上安装了Keras和Tensorflow,并在网上进一步研究,发现另一个关于相同问题的Stack Overflow帖子,答案中提到:
你必须设置并定义模型的架构,然后使用model.load_weights
但我对这个答案理解不够,无法根据答案(链接到git gist)重新创建代码。以下是我在Linux操作系统上运行的Keras脚本,用于创建模型。有人能给我一些提示,如何定义架构,以便我可以在Windows 10笔记本电脑上使用这个模型进行预测吗?
#https://machinelearningmastery.com/custom-metrics-deep-learning-keras-python/#https://machinelearningmastery.com/save-load-keras-deep-learning-models/#https://machinelearningmastery.com/regression-tutorial-keras-deep-learning-library-python/import matplotlib.pyplot as pltimport numpy as npimport pandas as pdimport mathfrom keras.models import Sequentialfrom keras.layers import Densefrom sklearn.preprocessing import MinMaxScalerfrom sklearn.metrics import mean_squared_errorfrom keras import backendfrom keras.models import model_from_jsonimport osdef rmse(y_true, y_pred): return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis=-1))# 加载数据集dataset = pd.read_csv("joinedRuntime2.csv", index_col='Date', parse_dates=True)print(dataset.shape)print(dataset.dtypes)print(dataset.columns)# 打乱数据集df = dataset.sample(frac=1.0)# 分割为输入(X)和输出(Y)变量X = df.drop(['kWh'],1)Y = df['kWh']offset = int(X.shape[0] * 0.7)X_train, Y_train = X[:offset], Y[:offset]X_test, Y_test = X[offset:], Y[offset:]model = Sequential()model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))model.add(Dense(55, kernel_initializer='normal', activation='relu'))model.add(Dense(50, kernel_initializer='normal', activation='relu'))model.add(Dense(45, kernel_initializer='normal', activation='relu'))model.add(Dense(30, kernel_initializer='normal', activation='relu'))model.add(Dense(20, kernel_initializer='normal', activation='relu'))model.add(Dense(1, kernel_initializer='normal'))model.summary()model.compile(loss='mse', optimizer='adam', metrics=[rmse])# 训练模型history = model.fit(X_train, Y_train, epochs=5, batch_size=1, verbose=2)# 绘制指标plt.plot(history.history['rmse'])plt.title("kWh RSME Vs Epoch")plt.show()# 将模型序列化为JSONmodel_json = model.to_json()with open("model.json", "w") as json_file: json_file.write(model_json)model.save_weights("kwhFinal.h5")print("[INFO] Saved model to disk")
在Machine Learning Mastery上,他们还展示了保存YML和Json的方法,但我不知道这是否有助于定义模型架构…
回答:
你保存的是权重,而不是整个模型。一个模型不仅仅是权重,还包括架构、损失函数、指标等。
你有两种解决方案:
1) 继续保存权重:在加载模型时,你需要重新创建模型,加载权重,然后编译模型。你的代码应该类似这样:
model = Sequential()model.add(Dense(60, input_dim=7, kernel_initializer='normal', activation='relu'))model.add(Dense(55, kernel_initializer='normal', activation='relu'))model.add(Dense(50, kernel_initializer='normal', activation='relu'))model.add(Dense(45, kernel_initializer='normal', activation='relu'))model.add(Dense(30, kernel_initializer='normal', activation='relu'))model.add(Dense(20, kernel_initializer='normal', activation='relu'))model.add(Dense(1, kernel_initializer='normal'))model.load_weights("kwhFinal.h5")model.compile(loss='mse', optimizer='adam', metrics=[rmse])
2) 保存整个模型,使用以下命令:
model.save("kwhFinal.h5")
在加载时使用以下命令来加载你的模型:
from keras.models import load_modelmodel=load_model("kwhFinal.h5")