目标:当模型输入是整数、浮点数和对象(根据pandas数据框)时,使用sklearn预测给定类集的概率。
我使用的是来自UCI仓库的以下数据集:汽车数据集
我已经创建了一个几乎可以工作的管道:
# 为不同类型的变量创建转换器from sklearn.pipeline import Pipelinefrom sklearn.impute import SimpleImputerfrom sklearn.preprocessing import StandardScaler, OneHotEncoderimport pandas as pdimport numpy as npdata = pd.read_csv(r"C:\Auto Dataset.csv")target = 'aspiration'X = data.drop([target], axis = 1)y = data[target]integer_transformer = Pipeline(steps = [ ('imputer', SimpleImputer(strategy = 'most_frequent')), ('scaler', StandardScaler())])continuous_transformer = Pipeline(steps = [ ('imputer', SimpleImputer(strategy = 'most_frequent')), ('scaler', StandardScaler())])categorical_transformer = Pipeline(steps = [ ('imputer', SimpleImputer(strategy = 'most_frequent')), ('lab_enc', OneHotEncoder(handle_unknown='ignore'))])# 使用ColumnTransformer将转换应用到数据框中的正确列integer_features = X.select_dtypes(include=['int64'])continuous_features = X.select_dtypes(include=['float64'])categorical_features = X.select_dtypes(include=['object'])import numpy as npfrom sklearn.compose import ColumnTransformerpreprocessor = ColumnTransformer( transformers=[ ('ints', integer_transformer, integer_features), ('cont', continuous_transformer, continuous_features), ('cat', categorical_transformer, categorical_features)])# 创建一个结合上述预处理器和分类器的管道from sklearn.neighbors import KNeighborsClassifierbase = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', KNeighborsClassifier())])
当然,我希望使用predict_proba()
,但这给我带来了一些麻烦。我尝试了以下方法:
model = base.fit(X,y )preds = model.predict_proba(X)
然而,我收到了一个错误:
ValueError: No valid specification of the columns. Only a scalar, list or slice of all integers or all strings, or boolean mask is allowed
当然,这里是完整的错误追溯:
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-37-a1a29a8b3623> in <module>()----> 1 base_learner.fit(X)D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params) 263 This estimator 264 """--> 265 Xt, fit_params = self._fit(X, y, **fit_params) 266 if self._final_estimator is not None: 267 self._final_estimator.fit(Xt, y, **fit_params)D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit(self, X, y, **fit_params) 228 Xt, fitted_transformer = fit_transform_one_cached( 229 cloned_transformer, Xt, y, None,--> 230 **fit_params_steps[name]) 231 # Replace the transformer of the step with the fitted 232 # transformer. This is necessary when loading the transformerD:\Anaconda3\lib\site-packages\sklearn\externals\joblib\memory.py in __call__(self, *args, **kwargs) 327 328 def __call__(self, *args, **kwargs):--> 329 return self.func(*args, **kwargs) 330 331 def call_and_shelve(self, *args, **kwargs):D:\Anaconda3\lib\site-packages\sklearn\pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params) 612 def _fit_transform_one(transformer, X, y, weight, **fit_params): 613 if hasattr(transformer, 'fit_transform'):--> 614 res = transformer.fit_transform(X, y, **fit_params) 615 else: 616 res = transformer.fit(X, y, **fit_params).transform(X)D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in fit_transform(self, X, y) 445 self._validate_transformers() 446 self._validate_column_callables(X)--> 447 self._validate_remainder(X) 448 449 result = self._fit_transform(X, y, _fit_transform_one)D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in _validate_remainder(self, X) 299 cols = [] 300 for columns in self._columns:--> 301 cols.extend(_get_column_indices(X, columns)) 302 remaining_idx = sorted(list(set(range(n_columns)) - set(cols))) or None 303 D:\Anaconda3\lib\site-packages\sklearn\compose\_column_transformer.py in _get_column_indices(X, key) 654 return list(np.arange(n_columns)[key]) 655 else:--> 656 raise ValueError("No valid specification of the columns. Only a " 657 "scalar, list or slice of all integers or all " 658 "strings, or boolean mask is allowed")
不确定我错过了什么,但会感谢任何可能的帮助。
编辑:我使用的是sklearn版本0.20。
回答:
错误消息指出了正确的方向。列应该按名称或索引指定,但您传递了数据列作为DataFrame。
df.select_dtypes()
不输出列索引。它输出一个包含匹配列的DataFrame子集。您的代码应该是
# 使用ColumnTransformer将转换应用到数据框中的正确列integer_features = list(X.columns[X.dtypes == 'int64'])continuous_features = list(X.columns[X.dtypes == 'float64'])categorical_features = list(X.columns[X.dtypes == 'object'])
这样,例如,整数列将作为列表传递['curb-weight', 'engine-size', 'city-mpg', 'highway-mpg']