Tensorflow.js的CNN示例非常不错,我决定用我的自定义字符图像进行训练(如这样的本地图像 ,也可以作为浏览器中的img元素使用)。然而,我无法复制测试,因为示例代码使用了预处理的数据图像。
我复制了这里的示例(https://github.com/tensorflow/tfjs-examples/blob/master/mnist-node/README.md)并添加了所需的Node.js包。示例成功运行了。但我意识到我无法更改示例使用的数据,因为它加载了如下预处理的数据。
const BASE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/';const TRAIN_IMAGES_FILE = 'train-images-idx3-ubyte';const TRAIN_LABELS_FILE = 'train-labels-idx1-ubyte';const TEST_IMAGES_FILE = 't10k-images-idx3-ubyte';const TEST_LABELS_FILE = 't10k-labels-idx1-ubyte';
我制作了与MNIST相同格式的图像(28*28),所以我以为我可以只更改训练和测试数据,但失败了,因为我不知道idx3-ubyte
格式是什么。data.js
文件的URL在这里这里。
如何生成相同的ubyte
文件?或者如何直接使用本地图像或img元素?
更新我检查了data.js
文件的读取部分,并设法生成了相同的文件格式。它还包含头部值。
async function loadImages(filename) { const buffer = await fetchOnceAndSaveToDiskWithBuffer(filename); const headerBytes = IMAGE_HEADER_BYTES; const recordBytes = IMAGE_HEIGHT * IMAGE_WIDTH; const headerValues = loadHeaderValues(buffer, headerBytes); assert.equal(headerValues[0], IMAGE_HEADER_MAGIC_NUM); assert.equal(headerValues[2], IMAGE_HEIGHT); assert.equal(headerValues[3], IMAGE_WIDTH); const images = []; let index = headerBytes; while (index < buffer.byteLength) { const array = new Float32Array(recordBytes); for (let i = 0; i < recordBytes; i++) { // Normalize the pixel values into the 0-1 interval, from // the original 0-255 interval. array[i] = buffer.readUInt8(index++) / 255; } images.push(array); } assert.equal(images.length, headerValues[1]); return images;}async function loadLabels(filename) { const buffer = await fetchOnceAndSaveToDiskWithBuffer(filename); const headerBytes = LABEL_HEADER_BYTES; const recordBytes = LABEL_RECORD_BYTE; const headerValues = loadHeaderValues(buffer, headerBytes); assert.equal(headerValues[0], LABEL_HEADER_MAGIC_NUM); const labels = []; let index = headerBytes; while (index < buffer.byteLength) { const array = new Int32Array(recordBytes); for (let i = 0; i < recordBytes; i++) { array[i] = buffer.readUInt8(index++); } labels.push(array); } assert.equal(labels.length, headerValues[1]); return labels;} getData_(isTrainingData) { let imagesIndex; let labelsIndex; if (isTrainingData) { imagesIndex = 0; labelsIndex = 1; } else { imagesIndex = 2; labelsIndex = 3; } const size = this.dataset[imagesIndex].length; tf.util.assert( this.dataset[labelsIndex].length === size, `Mismatch in the number of images (${size}) and ` + `the number of labels (${this.dataset[labelsIndex].length})`); // Only create one big array to hold batch of images. const imagesShape = [size, IMAGE_HEIGHT, IMAGE_WIDTH, 1]; const images = new Float32Array(tf.util.sizeFromShape(imagesShape)); const labels = new Int32Array(tf.util.sizeFromShape([size, 1])); let imageOffset = 0; let labelOffset = 0; for (let i = 0; i < size; ++i) { images.set(this.dataset[imagesIndex][i], imageOffset); labels.set(this.dataset[labelsIndex][i], labelOffset); imageOffset += IMAGE_FLAT_SIZE; labelOffset += 1; } return { images: tf.tensor4d(images, imagesShape), labels: tf.oneHot(tf.tensor1d(labels, 'int32'), LABEL_FLAT_SIZE).toFloat() }; }}
以下是生成器代码。
const {createCanvas, loadImage} = require('canvas');const tf = require('@tensorflow/tfjs');require('@tensorflow/tfjs-node');const fs = require('fs');const util = require('util');// const writeFile = util.promisify(fs.writeFile);// const readFile = util.promisify(fs.readFile);(async()=>{ const canvas = createCanvas(28,28); const ctx = canvas.getContext('2d'); const ch1 = await loadImage('./u.png'); const ch2 = await loadImage('./q.png'); const ch3 = await loadImage('./r.png'); const ch4 = await loadImage('./c.png'); const ch5 = await loadImage('./z.png'); console.log(ch1); ctx.drawImage(ch1, 0, 0); const ch1Data = tf.fromPixels(canvas, 1); ctx.drawImage(ch2, 0, 0); const ch2Data = tf.fromPixels(canvas, 1); ctx.drawImage(ch3, 0, 0); const ch3Data = tf.fromPixels(canvas, 1); ctx.drawImage(ch4, 0, 0); const ch4Data = tf.fromPixels(canvas, 1); ctx.drawImage(ch5, 0, 0); const ch5Data = tf.fromPixels(canvas, 1); // console.log(await ch1Data.data()); const b1 = Buffer.from(await ch1Data.data()); const b2 = Buffer.from(await ch2Data.data()); const b3 = Buffer.from(await ch3Data.data()); const b4 = Buffer.from(await ch4Data.data()); const b5 = Buffer.from(await ch5Data.data()); const buffers = [b1,b2,b3,b4,b5]; const labels = [0,1,3,2,4,0,1,2,1,0,3,0,2,3,4,0,]; const Images = []; const size = labels.length; for(var i = 0; i < size;i++){ Images.push(buffers[labels[i]]); } const imageHeaderBytes = 16; const imageRecordBytes = 28 * 28; const labelHeaderBytes = 8; const labelRecordBytes = 1; let imageBuffer = Buffer.alloc(imageHeaderBytes + size * imageRecordBytes); let labelBuffer = Buffer.alloc(labelHeaderBytes + size * labelRecordBytes); const imageHeaderValues = [2051, size, 28, 28]; const labelHeaderValues = [2049, size]; for (let i = 0; i < 4; i++) { // Header data is stored in-order (aka big-endian) imageBuffer.writeUInt32BE(imageHeaderValues[i], i * 4); } for (let i = 0; i < 2; i++) { // Header data is stored in-order (aka big-endian) labelBuffer.writeUInt32BE(labelHeaderValues[i], i * 4); } let imageindex = imageHeaderBytes; let labelindex = labelHeaderBytes; for(let i = 0; i < size; i++){ // imageBuffer = Buffer.concat([imageBuffer, Images[i]]); // labelBuffer= Buffer.concat([labelBuffer, Buffer.from([labels[i]])]); // labelBuffer= Buffer.concat([labelBuffer, Buffer.from([labels[i]])]); const image = Images[i]; let index = 0; while(index < image.byteLength){ imageBuffer.writeUInt8(image[index], imageindex); index++; imageindex++; } labelBuffer.writeUInt8(labels[i], labelindex++); } fs.writeFileSync('./testGeneratedImageBuffer', imageBuffer); fs.writeFileSync('./testGeneratedLabelBuffer', labelBuffer);})();
回答:
“ubyte”代表”无符号字节”。它指的是一个无符号的8位整数。每个images-ubyte
文件包含一系列无符号8位整数。每个整数都是MNIST图像中的一个像素,其值在0到255之间。
这就是图像在像素级别上的表示方式。现在让我们看看整个图像的级别,由28行和28列组成。需要28 * 28 = 784个这样的整数来表示一张图像。在文件中,它们的组织方式是:前28个整数对应第一行,接下来的28个整数对应第二行,依此类推。
数据集中所有的图像都是以这种方式表示的,它们的整数被连接起来形成一个image-ubyte
文件的内容。为什么有两个这样的文件?这是因为train-images-idx3-ubyte
是训练数据集,而t10k-images-idx3-ubyte
是测试数据集。
另外两个文件(labels-ubyte
)是MNIST图像的标签。像image-ubyte
文件一样,它们包含uint8(即无符号8位整数)。但与其保存0到255的值不同,标签文件的值在0到9之间,因为MNIST数据集中只有10个图像类别。
希望这些解释清楚了。