我无法使用来自fastai.text的预训练模型URLs.WT103

我正在尝试创建一个模型,该模型以单词作为输入并以段落作为输出。当我尝试将fastai|text上给出的示例应用到我自己的数据集时,出现了错误。错误发生在以下步骤。您在查看网站时,直到得到下面的代码才开始关注。但这段代码却引发了错误。这可能是什么原因导致的错误?

代码:

from fastai import *from fastai.text import * path = untar_data(URLs.IMDB_SAMPLE)df = pd.read_csv(path/'texts.csv')# 语言模型数据data_lm = TextLMDataBunch.from_csv(path, 'texts.csv')# 分类模型数据data_clas = TextClasDataBunch.from_csv(path, 'texts.csv', vocab=data_lm.train_ds.vocab, bs=32)data_lm.save()data_clas.save()data_lm = TextLMDataBunch.load(path)data_clas = TextClasDataBunch.load(path, bs=32)learn = language_model_learner(data_lm, pretrained_model=URLs.WT103, drop_mult=0.5)learn.fit_one_cycle(1, 1e-2)

错误代码:

learn = language_model_learner(data_lm, pretrained_model=URLs.WT103, drop_mult=0.5)

输出:

    102     if not ps: return None    103     if b is None: return ps[0].requires_grad--> 104     for p in ps: p.requires_grad=b    105     106 def trainable_params(m:nn.Module)->ParamList:RuntimeError: you can only change requires_grad flags of leaf variables. If you want to use a computed variable in a subgraph that doesn't require differentiation use var_no_grad = var.detach().

回答:

使用以下命令将grad设置为false:torch.set_grad_enabled(False)(在创建learner对象之前使用)

并使用torch.enable_grad()包装函数调用(learn.fit cycle()):

Related Posts

为什么我们在K-means聚类方法中使用kmeans.fit函数?

我在一个视频中使用K-means聚类技术,但我不明白为…

如何获取Keras中ImageDataGenerator的.flow_from_directory函数扫描的类名?

我想制作一个用户友好的GUI图像分类器,用户只需指向数…

如何查看每个词的tf-idf得分

我试图了解文档中每个词的tf-idf得分。然而,它只返…

如何修复 ‘ValueError: Found input variables with inconsistent numbers of samples: [32979, 21602]’?

我在制作一个用于情感分析的逻辑回归模型时遇到了这个问题…

如何向神经网络输入两个不同大小的输入?

我想向神经网络输入两个数据集。第一个数据集(元素)具有…

逻辑回归与机器学习有何关联

我们正在开会讨论聘请一位我们信任的顾问来做机器学习。一…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注