我遇到了这个错误:
ValueError: 检查输入时出错:期望序列有3个维度,但得到形状为(500, 400)的数组
这些是我使用的代码:
print(X1_Train.shape)print(X2_Train.shape)print(y_train.shape)
输出(这里每个都有500行):
(500, 400)(500, 1500)(500,)400 => 时间步长(如下)1500 => n(如下)
代码:
timesteps = 50 * 8n = 50 * 30def createClassifier(): sequence = Input(shape=(timesteps, 1), name='Sequence') features = Input(shape=(n,), name='Features') conv = Sequential() conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1))) conv.add(Conv1D(10, 5, activation='relu')) conv.add(MaxPool1D(2)) conv.add(Dropout(0.5)) conv.add(Conv1D(5, 6, activation='relu')) conv.add(Conv1D(5, 6, activation='relu')) conv.add(MaxPool1D(2)) conv.add(Dropout(0.5)) conv.add(Flatten()) part1 = conv(sequence) merged = concatenate([part1, features]) final = Dense(512, activation='relu')(merged) final = Dropout(0.5)(final) final = Dense(num_class, activation='softmax')(final) model = Model(inputs=[sequence, features], outputs=[final]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return modelmodel = createClassifier()# print(model.summary())history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
有什么见解吗?
回答:
两点 –
Conv1D层期望输入的形状为(batch_size, x, filters)
,在你的案例中为(500,400,1)
。
你需要重塑你的输入层,添加一个大小为1的轴。(这不会改变你的数据)。
你试图使用多个输入,Sequential API不是最佳选择。我建议使用函数式API
编辑:关于你的评论,不确定你哪里做错了,但这是你的代码(使用假数据)的工作版本,包含了重塑:
import kerasimport numpy as npX1_Train = np.ones((500,400))X2_Train = np.ones((500,1500))y_train = np.ones((500))print(X1_Train.shape)print(X2_Train.shape)print(y_train.shape)num_class = 1timesteps = 50 * 8n = 50 * 30def createClassifier(): sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence') features = keras.layers.Input(shape=(n,), name='Features') conv = keras.Sequential() conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1))) conv.add(keras.layers.Conv1D(10, 5, activation='relu')) conv.add(keras.layers.MaxPool1D(2)) conv.add(keras.layers.Dropout(0.5)) conv.add(keras.layers.Conv1D(5, 6, activation='relu')) conv.add(keras.layers.Conv1D(5, 6, activation='relu')) conv.add(keras.layers.MaxPool1D(2)) conv.add(keras.layers.Dropout(0.5)) conv.add(keras.layers.Flatten()) part1 = conv(sequence) merged = keras.layers.concatenate([part1, features]) final = keras.layers.Dense(512, activation='relu')(merged) final = keras.layers.Dropout(0.5)(final) final = keras.layers.Dense(num_class, activation='softmax')(final) model = keras.Model(inputs=[sequence, features], outputs=[final]) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return modelmodel = createClassifier()# print(model.summary())X1_Train = X1_Train.reshape((500,400,1))history = model.fit([X1_Train, X2_Train], y_train, epochs =5)
输出为:
Using TensorFlow backend.(500, 400)(500, 1500)(500,)Epoch 1/5500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000Epoch 2/5500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 3/5500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 4/5500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 5/5500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000