Keras CNN 错误:期望序列有3个维度,但得到形状为(500, 400)的数组

我遇到了这个错误:

ValueError: 检查输入时出错:期望序列有3个维度,但得到形状为(500, 400)的数组

这些是我使用的代码:

print(X1_Train.shape)print(X2_Train.shape)print(y_train.shape)

输出(这里每个都有500行):

(500, 400)(500, 1500)(500,)400 => 时间步长(如下)1500 => n(如下)

代码:

timesteps = 50 * 8n = 50 * 30def createClassifier():    sequence = Input(shape=(timesteps, 1), name='Sequence')    features = Input(shape=(n,), name='Features')    conv = Sequential()    conv.add(Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))    conv.add(Conv1D(10, 5, activation='relu'))    conv.add(MaxPool1D(2))    conv.add(Dropout(0.5))    conv.add(Conv1D(5, 6, activation='relu'))    conv.add(Conv1D(5, 6, activation='relu'))    conv.add(MaxPool1D(2))    conv.add(Dropout(0.5))    conv.add(Flatten())    part1 = conv(sequence)    merged = concatenate([part1, features])    final = Dense(512, activation='relu')(merged)    final = Dropout(0.5)(final)    final = Dense(num_class, activation='softmax')(final)    model = Model(inputs=[sequence, features], outputs=[final])    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    return modelmodel = createClassifier()# print(model.summary())history = model.fit([X1_Train, X2_Train], y_train, epochs =5)

有什么见解吗?


回答:

两点 –

Conv1D层期望输入的形状为(batch_size, x, filters),在你的案例中为(500,400,1)
你需要重塑你的输入层,添加一个大小为1的轴。(这不会改变你的数据)。

你试图使用多个输入,Sequential API不是最佳选择。我建议使用函数式API

编辑:关于你的评论,不确定你哪里做错了,但这是你的代码(使用假数据)的工作版本,包含了重塑:

import kerasimport numpy as npX1_Train = np.ones((500,400))X2_Train = np.ones((500,1500))y_train = np.ones((500))print(X1_Train.shape)print(X2_Train.shape)print(y_train.shape)num_class = 1timesteps = 50 * 8n = 50 * 30def createClassifier():    sequence = keras.layers.Input(shape=(timesteps, 1), name='Sequence')    features = keras.layers.Input(shape=(n,), name='Features')    conv = keras.Sequential()    conv.add(keras.layers.Conv1D(10, 5, activation='relu', input_shape=(timesteps, 1)))    conv.add(keras.layers.Conv1D(10, 5, activation='relu'))    conv.add(keras.layers.MaxPool1D(2))    conv.add(keras.layers.Dropout(0.5))    conv.add(keras.layers.Conv1D(5, 6, activation='relu'))    conv.add(keras.layers.Conv1D(5, 6, activation='relu'))    conv.add(keras.layers.MaxPool1D(2))    conv.add(keras.layers.Dropout(0.5))    conv.add(keras.layers.Flatten())    part1 = conv(sequence)    merged = keras.layers.concatenate([part1, features])    final = keras.layers.Dense(512, activation='relu')(merged)    final = keras.layers.Dropout(0.5)(final)    final = keras.layers.Dense(num_class, activation='softmax')(final)    model = keras.Model(inputs=[sequence, features], outputs=[final])    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])    return modelmodel = createClassifier()# print(model.summary())X1_Train = X1_Train.reshape((500,400,1))history = model.fit([X1_Train, X2_Train], y_train, epochs =5)

输出为:

Using TensorFlow backend.(500, 400)(500, 1500)(500,)Epoch 1/5500/500 [==============================] - 1s 3ms/step - loss: 1.1921e-07 - acc: 1.0000Epoch 2/5500/500 [==============================] - 0s 160us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 3/5500/500 [==============================] - 0s 166us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 4/5500/500 [==============================] - 0s 154us/step - loss: 1.1921e-07 - acc: 1.0000Epoch 5/5500/500 [==============================] - 0s 157us/step - loss: 1.1921e-07 - acc: 1.0000

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注