我试图让LSTM模型继续上次运行中断的地方。所有代码编译正常,直到我尝试拟合网络时,它给出了一个错误:
ValueError: 检查目标时出错:期望dense_29有3个维度,但得到的数组形状为(672, 1)
我查看了多篇文章,如这篇和这篇,但我没能找出我的代码中有什么问题。
from keras import Sequentialfrom keras.preprocessing.sequence import pad_sequencesfrom sklearn.model_selection import train_test_splitfrom keras.models import Sequential,Modelfrom keras.layers import LSTM, Dense, Bidirectional, Input,Dropout,BatchNormalizationfrom keras import backend as Kfrom keras.engine.topology import Layerfrom keras import initializers, regularizers, constraintsfrom keras.callbacks import ModelCheckpointfrom keras.models import load_modelimport os.pathimport osfilepath="Train-weights.best.hdf5"act = 'relu'model = Sequential()model.add(BatchNormalization(input_shape=(10, 128)))model.add(Bidirectional(LSTM(128, dropout=0.5, activation=act, return_sequences=True)))model.add(Dense(1,activation='sigmoid'))if (os.path.exists(filepath)): print("继续之前的训练") model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) with open('model_architecture.json', 'r') as f: model = model_from_json(f.read()) model.load_weights(filepath)else: print("第一次运行") model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=2) model.save_weights(filepath) with open('model_architecture.json', 'w') as f: f.write(model.to_json()) checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=100, batch_size=32, callbacks=callbacks_list, verbose=0)
回答:
尝试使用model.summary()
,你会发现网络中最后一层的输出形状(即Dense层)是(None, 10, 1)
。因此,你提供给模型的标签(即y_train
)也必须具有(num_samples, 10, 1)
的形状。
如果输出形状(None, 10, 1)
不是你想要的(例如,你希望模型的输出形状为(None, 1)
),那么你需要修改模型定义。一个简单的修改方法是从LSTM层中移除return_sequences=True
参数。