我对机器学习和Keras非常新手,卡在了输入数据的步骤。我的数据看起来像这样:
[[[0.01363717 0. ] [0.01577874 0. ] [0.01463021 0. ]] [[0.01577874 0. ] [0.01463021 0. ] [0.01006721 0. ]] [[0.01463021 0. ] [0.01006721 0. ] [0.00762504 0. ]]...]
数据的形状是:(1607, 3, 2)。如何将:
[[0.01363717 0. ] [0.01577874 0. ] [0.01463021 0. ]]
作为输入传递给一个包含512个CuDNNLSTM单元的层?
这是我的整个网络:
def create_model(): model = Sequential() model.add(CuDNNLSTM(512, input_shape=(3,2), return_sequences=True, name='inputlstm1')) model.add(Dropout(0.2)) model.add(CuDNNLSTM(512, return_sequences=True,name='lstm2')) model.add(Dropout(0.2)) model.add(CuDNNLSTM(512, return_sequences=True,name='lstm3')) model.add(Dropout(0.2)) model.add(Dense(32, activation='relu', name='dense1')) model.add(Dropout(0.2)) model.add(Dense(1, activation='softmax', name='denseoutput2')) # Compile model model.compile( loss='mse', optimizer='adam', metrics=['accuracy'], ) return model
以及它的拟合过程:
model=create_model()history=model.fit(xtrain, ytrain,batch_size=1, epochs=5, validation_data=(xtest, ytest), verbose=1)
回答:
构建Keras层时需要指定传入数组的形状,这里要训练的数组形状为(3,2),共有1607个样本,
input_shape = (3,2)X = LSTM(124, activation = 'sigmoid', name='layer1', dropout = 0.4) (temp)
如果你想使用堆叠LSTM,可以使用以下方法:
input_shape = (3,2) X = LSTM(124, activation = 'sigmoid', name='layer1', dropout = 0.4,return_sequences=True) (temp) X = LSTM(64, activation = 'sigmoid', name='layer2', dropout = 0.4) (X)
编辑
def create_model(): model = keras.models.Sequential() model.add(keras.layers.CuDNNLSTM(512, input_shape=(3,2), return_sequences=True, name='inputlstm1')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.CuDNNLSTM(512, return_sequences=True,name='lstm2')) model.add(keras.layers.Dropout(0.2)) # 堆叠LSTM的最后一层不需要返回输入序列 model.add(keras.layers.CuDNNLSTM(512,name='lstm3')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Dense(32, activation='relu', name='dense1')) model.add(keras.layers.Dropout(0.2)) model.add(keras.layers.Dense(1, activation='softmax', name='denseoutput2')) # Compile model model.compile( loss='mse', optimizer='adam', metrics=['accuracy'], ) return model