逻辑回归评估的Sklearn Python Log Loss错误

我使用逻辑回归训练了一个模型,现在需要用Log Loss来评估其准确性。以下是数据的一些细节:

特征/ X

   Principal terms age Gender weekend Bachelor  HighSchoolerBelow college0   1000     30    45   0       0       0               1              01   1000     30    33   1       0       1               0              02   1000     15    27   0       0       0               0              1

标签/ Y

array(['PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'PAIDOFF', 'COLLECTION'], dtype=object)

逻辑回归模型:

from sklearn.linear_model import LogisticRegressionlogreg = LogisticRegression(C=1e5, solver='lbfgs', multi_class='multinomial')Feature = df[['Principal','terms','age','Gender','weekend']]Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)Feature.drop(['Master or Above'], axis = 1,inplace=True)X = FeatureX= preprocessing.StandardScaler().fit(X).transform(X)y = df['loan_status'].valuesX_train, X_test, y_train, lg_y_test = train_test_split(X, y, test_size=0.3, random_state=4)# we create an instance of Neighbours Classifier and fit the data.logreg.fit(X_train, y_train)lg_loan_status = logreg.predict(X_test)lg_loan_status

现在我需要计算Jaccard, F1-score和LogLoss

这是我的单独测试数据集:

test_df['due_date'] = pd.to_datetime(test_df['due_date'])test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])test_df['dayofweek'] = test_df['effective_date'].dt.dayofweektest_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3)  else 0)test_df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)# test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)Feature = test_df[['Principal','terms','age','Gender','weekend']]Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)Feature.drop(['Master or Above'], axis = 1,inplace=True)Feature.head()X = FeatureY = test_df['loan_status'].valuesFeature.head()    Principal terms age Gender weekend Bechalor HighSchoolorBelow  college0   1000.0    30.0  50.0 female  0.0    0               1            01   300.0      7.0  35.0  male   1.0    1               0            02   1000.0    30.0  43.0 female  1.0    0               0            1

这是我尝试过的方法:

# Evaluation for Logistic RegressionX_train, X_test, y_train, lg_y_test = train_test_split(X, y, test_size=0.3, random_state=3)lg_jaccard = jaccard_similarity_score(lg_y_test, lg_loan_status, normalize=False)lg_f1_score = f1_score(lg_y_test, lg_loan_status, average='micro')lg_log_loss = log_loss(lg_y_test, lg_loan_status)print('Jaccard is : {}'.format(lg_jaccard))print('F1-score is : {}'.format(lg_f1_score))print('Log Loss is : {}'.format(lg_log_loss))

但它返回了以下错误:

ValueError: could not convert string to float: ‘COLLECTION’

更新:这是lg_y_test

['PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION''PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION' 'PAIDOFF' 'PAIDOFF' 'PAIDOFF' 'COLLECTION']

回答:

问题如下:

要计算log_loss,你需要得到预测的概率。如果你只提供了预测的类别(即概率最高的类别),这个指标是无法计算的。

Sklearn提供了predict_proba方法,只要可能就应该使用它,如下所示:

lg_loan_status_probas = logreg.predict_proba(X_test)lg_log_loss = log_loss(lg_y_test, lg_loan_status_probas)

Related Posts

如何对SVC进行超参数调优?

已关闭。此问题需要更加聚焦。目前不接受回答。 想要改进…

如何在初始训练后向模型添加训练数据?

我想在我的scikit-learn模型已经训练完成后再…

使用Google Cloud Function并行运行带有不同用户参数的相同训练作业

我正在寻找一种方法来并行运行带有不同用户参数的相同训练…

加载Keras模型,TypeError: ‘module’ object is not callable

我已经在StackOverflow上搜索并阅读了文档,…

在计算KNN填补方法中特定列中NaN值的”距离平均值”时

当我从头开始实现KNN填补方法来处理缺失数据时,我遇到…

使用巨大的S3 CSV文件或直接从预处理的关系型或NoSQL数据库获取数据的机器学习训练/测试工作

已关闭。此问题需要更多细节或更清晰的说明。目前不接受回…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注