我正在开发一个图像标注模型。我参考了这个Github仓库。我有三个方法,它们执行以下操作:
- 生成图像模型
- 生成标注模型
- 将图像和标注模型连接在一起
由于代码较长,我创建了一个Gist来展示这些方法。
这是我的图像模型和标注模型的摘要。
但是当我运行代码时,我遇到了以下错误:
TraceTraceback (most recent call last): File "trainer.py", line 99, in <module> model.fit([images, encoded_captions], one_hot_captions, batch_size = 1, epochs = 5) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/keras/engine/training.py", line 950, in fit batch_size=batch_size) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/keras/engine/training.py", line 671, in _standardize_user_data self._set_inputs(x) File "/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/keras/engine/training.py", line 575, in _set_inputs assert len(inputs) == 1AssertionError
由于错误来自Keras库,我不知道如何调试。但是在我尝试将它们连接在一起时出现了问题。
我想知道我是否遗漏了什么
回答:
您需要获取模型的输出,使用output
属性,然后使用Keras函数式API来连接它们(通过Concatenate
层或其等效的函数式接口concatenate
)并创建最终模型:
from keras.models import Modelimage_model = get_image_model()language_model = get_language_model(vocab_size)merged = concatenate([image_model.output, language_model.output])x = LSTM(256, return_sequences = False)(merged)x = Dense(vocab_size)(x)out = Activation('softmax')(x)model = Model([image_model.input, language_model.input], out)model.compile(loss='categorical_crossentropy', optimizer='rmsprop')model.fit([images, encoded_captions], one_hot_captions, ...)
在您的代码中,您也可以为模型创建逻辑定义一个函数:
def get_concatenated_model(image_model, language_model, vocab_size): merged = concatenate([image_model.output, language_model.output]) x = LSTM(256, return_sequences = False)(merged) x = Dense(vocab_size)(x) out = Activation('softmax')(x) model = Model([image_model.input, language_model.input], out) return model