这会返回以下错误
ValueError: The number of classes has to be greater than one; got 1
这对我来说毫无意义,因为“car_rating”列绝对有两个类别。进行值计数返回:
unacc 1210acc 518
因此有两个类别,一个比另一个小,但足够多,以至于分层k折应该能够在所有切割中保持两者。所以是什么导致了这个错误呢?
我使用的数据集可以在这里找到这里。我确实更改了列名,并将’good’和’vgood’类别合并到了’acc’中,但除此之外数据没有变化
编辑:这是plot_learning_curve的代码:
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 10)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : integer, optional Number of jobs to run in parallel (default 1). taken from: http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt
这是完整的堆栈跟踪:
---------------------------------------------------------------------------ValueError Traceback (most recent call last)<ipython-input-19-04113e3ff056> in <module>() 1 # the built in learning curve 2 clf = SVC(kernel='poly', degree=3, C=1000)----> 3 plot_learning_curve(estimator=clf, title="Test", X=X, y=y, cv=10)<ipython-input-9-022f43e40037> in plot_learning_curve(estimator, title, X, y, ylim, cv, n_jobs, train_sizes) 50 plt.ylabel("Score") 51 train_sizes, train_scores, test_scores = learning_curve(---> 52 estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) 53 train_scores_mean = np.mean(train_scores, axis=1) 54 train_scores_std = np.std(train_scores, axis=1)~/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in learning_curve(estimator, X, y, groups, train_sizes, cv, scoring, exploit_incremental_learning, n_jobs, pre_dispatch, verbose, shuffle, random_state) 1126 clone(estimator), X, y, scorer, train, test, 1127 verbose, parameters=None, fit_params=None, return_train_score=True)-> 1128 for train, test in train_test_proportions) 1129 out = np.array(out) 1130 n_cv_folds = out.shape[0] // n_unique_ticks~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable) 777 # was dispatched. In particular this covers the edge 778 # case of Parallel used with an exhausted iterator.--> 779 while self.dispatch_one_batch(iterator): 780 self._iterating = True 781 else:~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator) 623 return False 624 else:--> 625 self._dispatch(tasks) 626 return True 627 ~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch) 586 dispatch_timestamp = time.time() 587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)--> 588 job = self._backend.apply_async(batch, callback=cb) 589 self._jobs.append(job) 590 ~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback) 109 def apply_async(self, func, callback=None): 110 """Schedule a func to be run"""--> 111 result = ImmediateResult(func) 112 if callback: 113 callback(result)~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch) 330 # Don't delay the application, to avoid keeping the input 331 # arguments in memory--> 332 self.results = batch() 333 334 def get(self):~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self) 129 130 def __call__(self):--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items] 132 133 def __len__(self):~/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0) 129 130 def __call__(self):--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items] 132 133 def __len__(self):~/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, error_score) 456 estimator.fit(X_train, **fit_params) 457 else:--> 458 estimator.fit(X_train, y_train, **fit_params) 459 460 except Exception as e:~/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py in fit(self, X, y, sample_weight) 148 149 X, y = check_X_y(X, y, dtype=np.float64, order='C', accept_sparse='csr')--> 150 y = self._validate_targets(y) 151 152 sample_weight = np.asarray([]~/anaconda3/lib/python3.6/site-packages/sklearn/svm/base.py in _validate_targets(self, y) 504 raise ValueError( 505 "The number of classes has to be greater than one; got %d"--> 506 % len(cls)) 507 508 self.classes_ = clsValueError: The number of classes has to be greater than one; got 1
回答:
是的,问题是由于train_sizes
引起的。
初始值是:
train_sizes=np.linspace(.1, 1.0, 10)
这用于查找train_sizes_abs属性(它只是将训练集的浮点分数转换为实际数字:
...n_max_training_samples = len(cv_iter[0][0])train_sizes_abs = _translate_train_sizes(train_sizes, n_max_training_samples)......
然后用于实际选择每个折叠的增量训练数据:
...else: train_test_proportions = [] for train, test in cv_iter: for n_train_samples in train_sizes_abs: train_test_proportions.append((train[:n_train_samples], test))......
这导致了一个问题,当第一次选择数据进行训练时(train_test_proportions
中的第一个值),它恰好只包含一个类别。我们对此无能为力。
但如果我们能在之前对训练数据进行洗牌,那么这个问题就不会发生(尽管在洗牌后选出的数据仍然可能包含单一类别的可能性仍然存在,但这种情况很少见)
所以我们需要在learning_curve
调用中添加shuffle
参数:
train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes, shuffle=True)
之后代码将成功运行。