我设置了卷积层和池化层,然后进行反卷积和反池化,输入形状为 256 * 256 * 3 的图像,但最终出现了形状错误:
def build_auto_encode_model(shape=(256,256,3)): input_img = Input(shape=shape) x = Convolution2D(16, (3, 3), activation='relu', padding='same')(input_img) x = MaxPooling2D((2, 2), padding='same')(x) x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x) x = MaxPooling2D((2, 2), padding='same')(x) x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x) encoded = MaxPooling2D((2, 2), padding='same')(x) x = Convolution2D(8, (3, 3), activation='relu', padding='same')(encoded) x = UpSampling2D((2, 2))(x) x = Convolution2D(8, (3, 3), activation='relu', padding='same')(x) x = UpSampling2D((2, 2))(x) x = Convolution2D(16, (3, 3), activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Convolution2D(3, (3, 3), activation='sigmoid', padding='same')(x) encoder = Model(inputs=input_img, outputs=encoded) autoencoder = Model(inputs=input_img, outputs=decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') return encoder, autoencoderdef train_auto_encode_model(encoder_model_path="./data/encoder.h5"): X = np.load("data/train.npy") X_train = X[int(round(X.shape[0] * 0.2)):, :] X_test = X[0:int(round(X.shape[0] * 0.2)), :] encoder, autoencoder = build_auto_encode_model() autoencoder.fit(X_train, X_train, epochs=10, batch_size=64, shuffle=True, validation_data=(X_test, X_test)) encoder.save(encoder_model_path)
这是我得到的错误信息:
Error when checking target: expected conv2d_7 to have shape (252, 252, 3) but got array with shape (256, 256, 3)
错误追溯:
回答:
通过使用 autoencoder.summary()
,你会看到最后一个 Conv2D 层的输出形状为 (None, 252, 252, 3)
;因此,形状为 (256,256,3)
的标签是不兼容的。这个问题的根源是你忘记设置前一个 Conv2D 层的 padding
参数。将其设置为 'same'
可以解决这个问题:
x = Convolution2D(16, (3, 3), activation='relu', padding='same')(x)