Flask 在加载保存的文件时出现 dill.dill 错误

我在 s3 中保存了两个文件(模型和向量化器),并尝试从 s3 下载并在我的 Flask 应用文件中运行它们。但目前返回的是 dill.dill(没有名为的模块错误)。有趣的是,我在任何地方都没有导入“dill”,但看起来它是在内部导入并抱怨的。

    import flask    from flask import Flask, request, render_template, jsonify    from sklearn.externals import joblib    import numpy as np    from scipy import misc    from sklearn.feature_extraction.text import TfidfVectorizer    import boto3    import pickle     BUCKET_NAME = 'xxxx'    MODEL_FILE_NAME = 'text-classification-model-v1.pk'     VECTORIZER_FILE_NAME = 'word_vectorizer.pk'    ACCESS_KEY="QQQQ"    SECRET_KEY="ZZZZZ"    S3 = boto3.client('s3', aws_access_key_id=ACCESS_KEY,aws_secret_access_key=SECRET_KEY, region_name='us-west-2')    app = Flask(__name__)    @app.route('/', methods=['GET'])    def index():        payload = [request.args.get('description')]             prediction = predict_(payload)        return parse_data()    def predict_(payload):        transformed_text_features = load_vectorizer(payload)        return load_model(MODEL_FILE_NAME).predict(transformed_text_features)     def parse_data():        return 'xxx'    def load_vectorizer(payload):        with open("downloaded_vectorizer.pk", 'wb') as data:            S3.download_fileobj(BUCKET_NAME, VECTORIZER_FILE_NAME, data)        infile = open("downloaded_vectorizer.pk","rb")        loaded_vectorizer = joblib.load(infile)          infile.close()        transformed_text_features = loaded_vectorizer.transform(payload)          return transformed_text_features    def load_model(model):        with open("downloaded_model_textclassification.pkl", 'wb') as data:              S3.download_fileobj(BUCKET_NAME, MODEL_FILE_NAME, data)        infile = open("downloaded_model_textclassification.pkl","rb")            model = pickle.load(infile)         infile.close()        return model     ==========    error message    ==========      File "\flask\predict_commodity.py", line 32, in index        prediction = predict_(payload)      File "\flask\predict_commodity.py", line 38, in predict_        transformed_text_features = load_vectorizer(payload)      File "\flask\predict_commodity.py", line 60, in load_vectorize        loaded_vectorizer = joblib.load(infile)      File " \lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 568, in load        obj = _unpickle(fobj)      File " \lib\site-packages\sklearn\externals\joblib\numpy_pickle.py", line 508, in _unpickle        obj = unpickler.load()      File " \anaconda3\Lib\pickle.py", line 1050, in load        dispatch[key[0]](self)      File "\Lib\pickle.py", line 1338, in load_global        klass = self.find_class(module, name)      File "\Lib\pickle.py", line 1388, in find_class        __import__(module, level=0)    ModuleNotFoundError: No module named 'dill.dill'

回答:

在你的代码中,你使用了 picklesklearn.externals.joblib。这可能会引起问题。

此外,你可以尝试更新包:pip install dill --upgrade。这对我解决相同的问题有帮助。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注