我的Keras神经网络准确率总是卡在约0.55的值上,是因为我的优化器吗?

我编写了以下Keras神经网络代码,当我运行它时,准确率总是卡在0.4到0.6之间的值上。我选择的优化器是否有误,或者还有其他方法可以提高我的准确率?我有一个输入数组[8100:63]和一个输出数组[8100:3]。如果能得到一些帮助或建议,我将不胜感激。

这是我的代码:

输出总是看起来像这样:

 100/8160 [..............................] - ETA: 0s - loss: 8.4386e-05 - acc: 0.60002100/8160 [======>.......................] - ETA: 0s - loss: 7.6640e-05 - acc: 0.56334000/8160 [============>................] - ETA: 0s - loss: 7.5545e-05 - acc: 0.56035600/8160 [===================>..........] - ETA: 0s - loss: 7.5711e-05 - acc: 0.55807300/8160 [=========================>....] - ETA: 0s - loss: 7.6259e-05 - acc: 0.55378160/8160 [==============================] - 0s 28us/step - loss: 7.6090e-05 - acc: 0.5522Epoch 497/500 100/8160 [..............................] - ETA: 0s - loss: 9.6210e-05 - acc: 0.59001600/8160 [====>.........................] - ETA: 0s - loss: 8.0017e-05 - acc: 0.55062900/8160 [=========>....................] - ETA: 0s - loss: 7.9372e-05 - acc: 0.55664300/8160 [==============>...............] - ETA: 0s - loss: 7.7604e-05 - acc: 0.55265900/8160 [====================>.........] - ETA: 0s - loss: 7.5976e-05 - acc: 0.55207600/8160 [==========================>...] - ETA: 0s - loss: 7.5226e-05 - acc: 0.54888160/8160 [==============================] - 0s 33us/step - loss: 7.5611e-05 - acc: 0.5515Epoch 498/500 100/8160 [..............................] - ETA: 0s - loss: 7.1056e-05 - acc: 0.54002000/8160 [======>.......................] - ETA: 0s - loss: 7.3529e-05 - acc: 0.53903900/8160 [============>................] - ETA: 0s - loss: 7.2863e-05 - acc: 0.55055800/8160 [====================>.........] - ETA: 0s - loss: 7.3346e-05 - acc: 0.55347200/8160 [=========================>....] - ETA: 0s - loss: 7.4003e-05 - acc: 0.55248160/8160 [==============================] - 0s 29us/step - loss: 7.4069e-05 - acc: 0.5522Epoch 499/500 100/8160 [..............................] - ETA: 0s - loss: 6.8331e-05 - acc: 0.53001900/8160 [=====>........................] - ETA: 0s - loss: 7.2856e-05 - acc: 0.54323800/8160 [============>.................] - ETA: 0s - loss: 7.3400e-05 - acc: 0.54245800/8160 [====================>.........] - ETA: 0s - loss: 7.4324e-05 - acc: 0.54917700/8160 [===========================>..] - ETA: 0s - loss: 7.5220e-05 - acc: 0.55318160/8160 [==============================] - 0s 27us/step - loss: 7.5057e-05 - acc: 0.5522Epoch 500/500 100/8160 [..............................] - ETA: 0s - loss: 7.8258e-05 - acc: 0.57002100/8160 [======>.......................] - ETA: 0s - loss: 8.3809e-05 - acc: 0.54954100/8160 [==============>...............] - ETA: 0s - loss: 8.1708e-05 - acc: 0.54346100/8160 [=====================>........] - ETA: 0s - loss: 7.9374e-05 - acc: 0.54757900/8160 [============================>.] - ETA: 0s - loss: 7.8028e-05 - acc: 0.54858160/8160 [==============================] - 0s 26us/step - loss: 7.7851e-05 - acc: 0.5478

回答:

如果您在做回归任务,我建议将您关注的指标改为mse,以反映您训练的目标。

model.compile(optimizer=Optimizer,              loss=['mse'],              metrics=['mse']              )

如果您在做分类任务(准确率是关于分类的),那么损失函数应该改为

model.compile(optimizer=Optimizer,              loss=['categorical_crossentropy'],              metrics=['acc']              )

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注