这是我的代码:
used_time_period = "2009-01-01::2017-04-01"data_used = data_input[used_time_period,]split_coefficient = 0.8train_set_rate = round(nrow(data_used) * split_coefficient)data_train = data_used[1:train_set_rate,]data_test = data_used[(train_set_rate + 1):nrow(data_used),]model = keras_model_sequential() %>%layer_simple_rnn(units = 75, input_shape = dim(data_train[,1:3]), activation = "relu", return_sequences = TRUE) %>% layer_dense(units = 2, activation = "relu")model %>% compile(optimizer = "adam", loss = "binary_crossentropy", metrics = "binary_accuracy")history = model %>% fit(x = data_train[,1:3], y = data_train[,4:5], epochs = 40, batch_size = 20)
我得到的错误是这样的:
ValueError: 检查输入时出错:期望 simple_rnn_input 具有3个维度,但得到的数组形状为(1661, 3)
dim(data_train[,1:3]) = (1661, 3)
dim(data_train[,4:5]) = (1661, 2)
我哪里做错了?
回答:
正如错误消息所说,layer_simple_rnn
需要一个3D数组,但你使用的是一个data.frame
,这是一个2D数组(一个带有行和列的表)。
根据Keras的文档,循环层需要一个形状为(batch_size, timesteps, input_dim)
的数组。假设每一列对应不同的日期(如果我错了请纠正我),这样应该可以工作:
dim(data_train[, 1:3]) # [1] 10 3X <- as.matrix(data_train[, 1:3]) # 转换为数组dim(X) # [1] 10 3dim(X) <- c(dim(X), 1)dim(X) # [1] 10 3 1# 同样对YY <- as.matrix(data_train[, 4:5])dim(Y) <- c(dim(Y), 1)
现在X
和Y
具有3个维度,你可以将它们输入到你的模型中:
history = model %>% fit(x = X, y = Y, epochs = 40, batch_size = 20)