我有一个包含86,000行、5个特征和1个目标列的pandas DataFrame。我试图使用DataFrame的70%作为训练数据来训练一个DecisionTreeClassifier,结果在fit方法中得到了一个MemoryError。我尝试更改了一些参数,但我不清楚是什么导致了这个错误,因此不知道如何处理。我的系统是Windows 10,内存为8GB。
代码
train, test = train_test_split(data, test_size = 0.3)X_train = train.iloc[:, 1:-1] # 第一列不是特征y_train = train.iloc[:, -1]X_test = test.iloc[:, 1:-1]y_test = test.iloc[:, -1]DT = DecisionTreeClassifier()DT.fit(X_train, y_train)dt_predictions = DT.predict(X_test)
错误
File (...), line 97, in <module>DT.fit(X_train, y_train)File "(...)\AppData\Local\Programs\Python\Python36-32\lib\site-packages\sklearn\tree\tree.py", line 790, in fitX_idx_sorted=X_idx_sorted)File "(...)\AppData\Local\Programs\Python\Python36-32\lib\site-packages\sklearn\tree\tree.py", line 362, in fitbuilder.build(self.tree_, X, y, sample_weight, X_idx_sorted)File "sklearn\trewe\_tree.pyx", line 145, in sklearn.tree._tree.DepthFirstTreeBuilder.buildFile "sklearn\tree\_tree.pyx", line 244, in sklearn.tree._tree.DepthFirstTreeBuilder.buildFile "sklearn\tree\_tree.pyx", line 735, in sklearn.tree._tree.Tree._add_nodeFile "sklearn\tree\_tree.pyx", line 707, in sklearn.tree._tree.Tree._resize_cFile "sklearn\tree\_utils.pyx", line 39, in sklearn.tree._utils.safe_reallocMemoryError: could not allocate 671612928 bytes
当我尝试使用RandomForestClassifier时,同样在执行拟合的那一行出现了相同的错误。我该如何解决这个问题?
回答:
我遇到了同样的问题。请确保您处理的是分类问题而不是回归问题。如果您的目标列是连续的,您可能需要使用http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html而不是RandomForestClassifier。