将CNN从tf.layers重写为原始tf后的性能不佳

tf.layers模块的帮助下,我创建了一个简单的CNN来在MNIST数据库上进行训练。

首先我们加载数据:

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

然后设置一些基本参数,构建并训练模型:

learning_rate = 0.01training_epochs = 10batch_size = 100x = tf.placeholder(tf.float32, [None, 784], name='InputData')y = tf.placeholder(tf.float32, [None, 10], name='LabelData')with tf.name_scope('Model'):    input_layer = tf.reshape(x, [-1, 28, 28, 1], name='InputReshaped')    conv1 = tf.layers.conv2d(inputs=input_layer, filters=32, kernel_size=[4, 4], padding="same", activation=tf.nn.relu)    pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)    dropout1 = tf.layers.dropout(inputs=pool1, rate=0.25)    conv2 = tf.layers.conv2d(inputs=dropout1, filters=32, kernel_size=[4, 4], padding="same", activation=tf.nn.relu)    pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)    dropout2 = tf.layers.dropout(inputs=pool2, rate=0.25)    pool2_flat = tf.reshape(dropout2, [-1, 7 * 7 * 32])    dense = tf.layers.dense(inputs=pool2_flat, units=256, activation=tf.nn.relu)    dropout3 = tf.layers.dropout(inputs=dense, rate=0.5)    pred = tf.layers.dense(inputs=dropout3, units=10)with tf.name_scope('Loss'):    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=y))with tf.name_scope('SGD'):    optimizer = tf.train.GradientDescentOptimizer(learning_rate)    train_step = optimizer.minimize(loss)with tf.name_scope('Accuracy'):    acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))    acc = tf.reduce_mean(tf.cast(acc, tf.float32))init = tf.global_variables_initializer()with tf.Session() as sess:    sess.run(init)    for epoch in range(training_epochs):        avg_cost = 0.        avg_acc = 0.        total_batch = int(mnist.train.num_examples/batch_size)        for i in range(total_batch):            batch_xs, batch_ys = mnist.train.next_batch(batch_size)            _, c, ac = sess.run([train_step, loss, acc], feed_dict={x: batch_xs, y: batch_ys})            avg_cost += c / total_batch            avg_acc += ac / total_batch        print("Epoch: {:04}, avg_cost = {:.9f}, avg_acc = {:.4f}".format(epoch + 1, avg_cost, avg_acc ))    print("Optimization Finished!")

它运行良好,表现不错,并输出以下内容:

Epoch: 0001, avg_cost = 1.032827925, avg_acc = 0.7110Epoch: 0002, avg_cost = 0.271804677, avg_acc = 0.9180...Epoch: 0010, avg_cost = 0.067859485, avg_acc = 0.9790Optimization Finished!

然而,我希望在不使用tf.layers的情况下重写模型。因此,我将Model块中的代码更改为以下内容 – 我认为这应该与之前的几乎相同:

def weight_variable(shape):  initial = tf.truncated_normal(shape, stddev=0.1, mean = 0.1)  return tf.Variable(initial)def bias_variable(shape):  initial = tf.constant(0.1, shape=shape)  return tf.Variable(initial)with tf.name_scope('Model'):    with tf.name_scope('Input_L'):        input_tsr = tf.reshape(x, [-1, 28, 28, 1], name='InputReshaped')    with tf.name_scope('Conv1_L'):        W_conv1 = weight_variable([4, 4, 1, 32])        b_conv1 = bias_variable([32])        conv1 = tf.add(tf.nn.conv2d(input_tsr, W_conv1, strides=[1, 1, 1, 1], padding='SAME'), b_conv1)        h_conv1 = tf.nn.relu(conv1)        h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')        dropout1 = tf.nn.dropout(h_pool1, 0.75)    with tf.name_scope('Conv2_L'):        W_conv2 = weight_variable([4, 4, 32, 32])        b_conv2 = bias_variable([32])        conv2 = tf.add(tf.nn.conv2d(dropout1, W_conv2, strides=[1, 1, 1, 1], padding='SAME'), b_conv2)        h_conv2 = tf.nn.relu(conv2)        h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')        dropout2 = tf.nn.dropout(h_pool2, 0.75)    with tf.name_scope('Dense_L'):        W_dense = weight_variable([7 * 7 * 32, 256])        b_dense = bias_variable([256])        flat_tsr = tf.reshape(dropout2, [-1, 7 * 7 * 32])        dense = tf.add(tf.matmul(flat_tsr, W_dense), b_dense)        h_dense =  tf.nn.relu(dense)        dropout3 = tf.nn.dropout(h_dense, 0.5)    with tf.name_scope('Output_L'):        W_out = weight_variable([256, 10])        b_out = bias_variable([10])        pred = tf.add(tf.matmul(dropout3, W_out), b_out)

不幸的是,它的表现非常差,准确率无法超过0.12,我认为这意味着模型只是在猜测正确答案。

Epoch: 0001, avg_cost = 22.226242821, avg_acc = 0.1106Epoch: 0002, avg_cost = 2.301470806, avg_acc = 0.1123...Epoch: 0010, avg_cost = 2.301233784, avg_acc = 0.1123Optimization Finished!

为什么第二个模型无法正常学习?你能指出第一个模型和第二个模型之间的区别吗(除了权重和偏置的初始化)?


回答:

我认为文档中没有提到,但对于tf.layers子模块中的层,当未提供初始化器时,变量初始化器默认为glorot_uniform_initializer

如果你相应地替换你的权重定义,应该会更接近你之前的结果。

Related Posts

Keras Dense层输入未被展平

这是我的测试代码: from keras import…

无法将分类变量输入随机森林

我有10个分类变量和3个数值变量。我在分割后直接将它们…

如何在Keras中对每个输出应用Sigmoid函数?

这是我代码的一部分。 model = Sequenti…

如何选择类概率的最佳阈值?

我的神经网络输出是一个用于多标签分类的预测类概率表: …

在Keras中使用深度学习得到不同的结果

我按照一个教程使用Keras中的深度神经网络进行文本分…

‘MatMul’操作的输入’b’类型为float32,与参数’a’的类型float64不匹配

我写了一个简单的TensorFlow代码,但不断遇到T…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注