我有一个包含6种不同多米诺骨牌以及一个“控制”组(婴儿)的89张图像的训练集,这些图像被分为7组。因此,输出y是7。每张图像大小为100×100,黑白图像,因此X的总像素数为100,000。
我使用的是Andrew Ng的Coursera课程中提供的Octave代码,创建了一个带有单隐藏层的 neural network,并对其进行了些许修改。
我首先尝试了3个不同的组(两个多米诺骨牌,一个婴儿),结果几乎达到了100%的准确率。现在我增加到7个不同的图像组。准确率大幅下降,几乎只能正确识别出与多米诺骨牌差异很大的婴儿照片。
我尝试了10个不同的lambda值,10个不同的神经元数量(在5到20之间),以及尝试了不同的迭代次数,并将这些结果与成本和准确率进行了对比,以寻找最佳匹配。
我也尝试了特征归一化(在下面的代码中已注释掉),但这并没有帮助。
这是我使用的代码:
% Initializationclear ; close all; clc; more off;pkg load image;fprintf('Running Domino Identifier ... \n');%iteration_vector = [100, 300, 1000, 3000, 10000, 30000];%accuracies = [];%costs = [];%for iterations_i = 1:length(iteration_vector) # INPUTS input_layer_size = 10000; % 100x100 Input Images of Digits hidden_layer_size = 50; % Hidden units num_labels = 7; % Number of different outputs iterations = 100000; % Number of iterations during training lambda = 0.13; %hidden_layer_size = hidden_layers(hidden_layers_i); %lambda = lambdas(lambda_i) %iterations = %iteration_vector(iterations_i) [X,y] = loadTrainingData(num_labels); %[X_norm, mu, sigma] = featureNormalize(X_unnormed); %X = X_norm; initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size); initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; [J grad] = nnCostFunction(initial_nn_params, input_layer_size, hidden_layer_size, num_labels, X, y, lambda); fprintf('\nTraining Neural Network... \n') % After you have completed the assignment, change the MaxIter to a larger % value to see how more training helps. options = optimset('MaxIter', iterations); % Create "short hand" for the cost function to be minimized costFunction = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, num_labels, X, y, lambda); % Now, costFunction is a function that takes in only one argument (the % neural network parameters) [nn_params, cost] = fmincg(costFunction, initial_nn_params, options); % Obtain Theta1 and Theta2 back from nn_params Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); displayData(Theta1(:, 2:end)); [predictionData, images] = loadTrainingData(num_labels); [h2_training, pred_training] = predict(Theta1, Theta2, predictionData); fprintf('\nTraining Accuracy: %f\n', mean(double(pred_training' == y)) * 100); %if length(accuracies) > 0 % accuracies = [accuracies; mean(double(pred_training' == y))]; %else % accuracies = [mean(double(pred_training' == y))]; %end %last_cost = cost(length(cost)); %if length(costs) > 0 % costs = [costs; last_cost]; %else % costs = [last_cost]; %end%endfor % Testing samplesfprintf('Loading prediction images');[predictionData, images] = loadPredictionData();[h2, pred] = predict(Theta1, Theta2, predictionData)for i = 1:length(pred) figure; displayData(predictionData(i, :)); title (strcat(translateIndexToTile(pred(i)), " Certainty:", num2str(max(h2(i, :))*100))); pause;endfor%y = provideAnswers(im_vector);
现在我的问题是:
-
我的数值设置是否存在问题,导致X与其他参数差异过大?
-
我应该做些什么来改进这个神经网络?
-
如果我进行特征归一化,是否需要在某个地方将数值重新乘回到0-255的范围内?
回答:
我应该做些什么来改进这个神经网络?
使用带有多层(例如5层)的卷积神经网络(CNN)。对于视觉问题,CNN在性能上远远超过多层感知器(MLP)。你目前使用的是一个只有单隐藏层的MLP。对于一个包含7个类别的图像问题,这个网络可能表现不佳。一个需要考虑的问题是你拥有的训练数据量。通常,我们希望每个类别至少有数百个样本。
如果我进行特征归一化,是否需要在某个地方将数值重新乘回到0-255的范围内?
通常,对于分类问题是不需要的。归一化可以视为一个预处理步骤。然而,如果你处理的是图像重建这样的问题,那么在最后你需要将数据转换回原始域。