如何在GridSearchCV中对数据进行标准化?

如何在GridSearchCV中对数据进行标准化?

这是我的代码。我不知道如何操作。

import datasetimport warningswarnings.filterwarnings("ignore")import pandas as pddataset = pd.read_excel('../dataset/dataset_experiment1.xlsx')X = dataset.iloc[:,1:-1].valuesy = dataset.iloc[:,66].valuesfrom sklearn.model_selection import GridSearchCV#from sklearn.pipeline import Pipelinefrom sklearn.preprocessing import StandardScalerstdizer = StandardScaler()print('===Grid Search===')print('logistic regression')model = LogisticRegression()parameter_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}grid_search = GridSearchCV(model, param_grid=parameter_grid, cv=kfold, scoring = scoring3)grid_search.fit(X, y)print('Best score: {}'.format(grid_search.best_score_))print('Best parameters: {}'.format(grid_search.best_params_))print('\n')

更新 这是我尝试运行的代码,但出现了错误:

print('logistic regression')model = LogisticRegression()pipeline = Pipeline([('scale', StandardScaler()), ('clf', model)])parameter_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']}grid_search = GridSearchCV(pipeline, param_grid=parameter_grid, cv=kfold, scoring = scoring3)grid_search.fit(X, y)print('Best score: {}'.format(grid_search.best_score_))print('Best parameters: {}'.format(grid_search.best_params_))print('\n')

回答:

使用 sklearn.pipeline.Pipeline

示例:

from sklearn.pipeline import Pipelinefrom sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = \        train_test_split(X, y, test_size=0.33)pipe = Pipeline([    ('scale', StandardScaler()),    ('clf', LogisticRegression())])param_grid = [    {        'clf__solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],        'clf__C': np.logspace(-3, 1, 5),    },]grid = GridSearchCV(pipe, param_grid=param_grid, cv=3, n_jobs=-1, verbose=2)grid.fit(X_train, y_train)

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注