在了解Tensorflow的过程中,我构建了一个用于分类的玩具网络。该网络有15个输入节点,这些节点的特征与相应类别标签的一热编码相同(索引从1开始)。因此,从输入CSV文件加载的数据可能看起来像这样:
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2...0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,15
该网络只有一个隐藏层和一个输出层,后者包含给定类的概率。我的问题是:在训练过程中,网络对作为第一个输入的任何内容分配了越来越高的概率。
以下是相关的代码行(省略了一些行):
# number_of_p : 样本数# number_of_a : 属性数(特征) -> 15# number_of_s : 样式数(标签) -> 15# 生成隐藏层的函数# nodes是每层节点的列表(len(nodes) = 隐藏层的数量)def hidden_generation(nodes): hidden_nodes = [number_of_a] + nodes + [number_of_s] number_of_layers = len(hidden_nodes) - 1 print(hidden_nodes) hidden_layer = list() for i in range (0,number_of_layers): hidden_layer.append(tf.zeros([hidden_nodes[i],batch_size])) hidden_weights = list() for i in range (0,number_of_layers): hidden_weights.append(tf.Variable(tf.random_normal([hidden_nodes[i+1], hidden_nodes[i]]))) hidden_biases = list() for i in range (0,number_of_layers): hidden_biases.append(tf.Variable(tf.zeros([hidden_nodes[i+1],batch_size]))) return hidden_layer, hidden_weights, hidden_biases#损失函数def loss(labels, logits): cross_entropy = tf.losses.softmax_cross_entropy( onehot_labels = labels, logits = logits) return tf.reduce_mean(cross_entropy, name = 'xentropy_mean')hidden_layer, hidden_weights, hidden_biases = hidden_generation(hidden_layers)with tf.Session() as training_sess: training_sess.run(tf.global_variables_initializer()) training_sess.run(a_iterator.initializer, feed_dict = {a_placeholder_feed: training_set.data}) current_a = training_sess.run(next_a) training_sess.run(s_iterator.initializer, feed_dict = {s_placeholder_feed: training_set.target}) current_s = training_sess.run(next_s) s_one_hot = training_sess.run(tf.one_hot((current_s - 1), number_of_s)) for i in range (1,len(hidden_layers)+1): hidden_layer[i] = tf.tanh(tf.matmul(hidden_weights[i-1], (hidden_layer[i-1])) + hidden_biases[i-1]) output = tf.nn.softmax(tf.transpose(tf.matmul(hidden_weights[-1],hidden_layer[-1]) + hidden_biases[-1])) optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1) # 使用AdamOptimizer无济于事,选择更大或更小的学习率也无济于事 train = optimizer.minimize(loss(s_one_hot, output)) training_sess.run(train) for i in range (0, (number_of_p)): current_a = training_sess.run(next_a) current_s = training_sess.run(next_s) s_one_hot = training_sess.run(tf.transpose(tf.one_hot((current_s - 1), number_of_s))) # (不知道为什么我必须声明两次才能移动数据流) training_sess.run(train)
我认为损失函数的声明位置不正确,总是引用相同的向量。然而,替换损失函数对我目前没有帮助。如果有人愿意帮助我,我会很乐意提供剩余的代码。
编辑:我已经发现并修复了一个主要的(而且愚蠢的)错误:在tf.matmul
中,权重应该放在节点值之前。
回答:
你不希望反复声明训练操作。这是不必要的,而且如你所指出的那样会更慢。你没有将current_a输入到神经网络中。所以你不会得到新的输出,你使用迭代器的方式也不正确,这也可能是问题的根源。
with tf.Session() as training_sess: training_sess.run(tf.global_variables_initializer()) training_sess.run(a_iterator.initializer, feed_dict = {a_placeholder_feed: training_set.data}) current_a = training_sess.run(next_a) training_sess.run(s_iterator.initializer, feed_dict = {s_placeholder_feed: training_set.target}) current_s = training_sess.run(next_s) s_one_hot = training_sess.run(tf.one_hot((current_s - 1), number_of_s)) for i in range (1,len(hidden_layers)+1): hidden_layer[i] = tf.tanh(tf.matmul(hidden_weights[i-1], (hidden_layer[i-1])) + hidden_biases[i-1]) output = tf.nn.softmax(tf.transpose(tf.matmul(hidden_weights[-1],hidden_layer[-1]) + hidden_biases[-1])) optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.1) # 使用AdamOptimizer无济于事,选择更大或更小的学习率也无济于事 train = optimizer.minimize(loss(s_one_hot, output)) training_sess.run(train) for i in range (0, (number_of_p)): current_a = training_sess.run(next_a) current_s = training_sess.run(next_s) s_one_hot = training_sess.run(tf.transpose(tf.one_hot((current_s - 1), number_of_s))) # (不知道为什么我必须声明两次才能移动数据流) training_sess.run(train)
这里有一些伪代码来帮助你获得正确的数据流。我建议在训练之前进行一热编码,这样在加载数据时会更容易处理。
train_dataset = tf.data.Dataset.from_tensor_slices((inputs, targets))train_dataset = train_dataset.batch(batch_size)train_dataset = train_dataset.repeat(num_epochs)iterator = train_dataset.make_one_shot_iterator()next_inputs, next_targets = iterator.get_next()# 定义训练过程global_step = tf.Variable(0, name="global_step", trainable=False)loss = Neural_net_function(next_inputs, next_targets)optimizer = tf.train.AdamOptimizer(learning_rate)grads_and_vars = optimizer.compute_gradients(loss)train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)with tf.Session() as training_sess: for i in range(number_of_training_samples * num_epochs): taining_sess.run(train_op)