如何在对象检测API中同时进行训练和评估?

我想在对象检测API中同时对我的数据集进行ssd_mobile_v1_coco模型的训练和评估。

然而,当我尝试这样做时,GPU内存几乎被占满,导致评估脚本无法启动。以下是我用于训练和评估的命令:
训练脚本在一个终端窗口中这样调用:

python3 train.py \        --logtostderr \        --train_dir=training_ssd_mobile_caltech \        --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config

训练运行正常,工作得很好…然后我在第二个终端窗口中尝试运行评估脚本:

 python3 eval.py \        --logtostderr \        --checkpoint_dir=training_ssd_mobile_caltech \        --eval_dir=eval_caltech \        --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config 

它失败并显示以下错误:

python3 eval.py \        --logtostderr \        --checkpoint_dir=training_ssd_mobile_caltech \        --eval_dir=eval_caltech \       --pipeline_config_path=ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_focal_loss_coco.config INFO:tensorflow:depth of additional conv before box predictor: 0INFO:tensorflow:depth of additional conv before box predictor: 0INFO:tensorflow:depth of additional conv before box predictor: 0INFO:tensorflow:depth of additional conv before box predictor: 0INFO:tensorflow:depth of additional conv before box predictor: 0INFO:tensorflow:depth of additional conv before box predictor: 02018-02-28 18:40:00.302271: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA2018-02-28 18:40:00.412808: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:895] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero2018-02-28 18:40:00.413217: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1105] Found device 0 with properties: name: GeForce GTX 1080 major: 6 minor: 1 memoryClockRate(GHz): 1.835pciBusID: 0000:01:00.0totalMemory: 7.92GiB freeMemory: 93.00MiB2018-02-28 18:40:00.413424: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1195] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:01:00.0, compute capability: 6.1)2018-02-28 18:40:00.957090: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 43.00M (45088768 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2018-02-28 18:40:00.957919: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 38.70M (40580096 bytes) from device: CUDA_ERROR_OUT_OF_MEMORYINFO:tensorflow:Restoring parameters from training_ssd_mobile_caltech/model.ckpt-4775INFO:tensorflow:Restoring parameters from training_ssd_mobile_caltech/model.ckpt-47752018-02-28 18:40:02.274830: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2018-02-28 18:40:02.278599: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2018-02-28 18:40:12.280515: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2018-02-28 18:40:12.281958: E tensorflow/stream_executor/cuda/cuda_driver.cc:936] failed to allocate 8.17M (8566528 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2018-02-28 18:40:12.282082: W tensorflow/core/common_runtime/bfc_allocator.cc:273] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.75MiB.  Current allocation summary follows.2018-02-28 18:40:12.282160: I tensorflow/core/common_runtime/bfc_allocator.cc:628] Bin (256):   Total Chunks: 190, Chunks in use: 190. 47.5KiB allocated for chunks. 47.5KiB in use in bin. 11.8KiB client-requested in use in bin.2018-02-28 18:40:12.282251: I tensorflow/core/common_runtime/bfc_allocator.cc:628] Bin (512):   Total Chunks: 70, Chunks in use: 70. 35.0KiB allocated for chunks. 35.0KiB in use in bin. 35.0KiB client-requested in use in bin.[.......................................]2018-02-28 18:40:12.290959: I tensorflow/core/common_runtime/bfc_allocator.cc:684] Sum Total of in-use chunks: 29.83MiB2018-02-28 18:40:12.290971: I tensorflow/core/common_runtime/bfc_allocator.cc:686] Stats: Limit:                    45088768InUse:                    31284736MaxInUse:                 32368384NumAllocs:                     808MaxAllocSize:              57968642018-02-28 18:40:12.291022: W tensorflow/core/common_runtime/bfc_allocator.cc:277] **********************xx*********xx**_*__****______***********************************************xx2018-02-28 18:40:12.291044: W tensorflow/core/framework/op_kernel.cc:1198] Resource exhausted: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfcWARNING:root:The following classes have no ground truth examples: 1/home/mm/models/research/object_detection/utils/metrics.py:144: RuntimeWarning: invalid value encountered in true_divide  num_images_correctly_detected_per_class / num_gt_imgs_per_class)/home/mm/models/research/object_detection/utils/object_detection_evaluation.py:710: RuntimeWarning: Mean of empty slice  mean_ap = np.nanmean(self.average_precision_per_class)/home/mm/models/research/object_detection/utils/object_detection_evaluation.py:711: RuntimeWarning: Mean of empty slice  mean_corloc = np.nanmean(self.corloc_per_class)Traceback (most recent call last):  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1350, in _do_call    return fn(*args)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1329, in _run_fn    status, run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/errors_impl.py", line 473, in __exit__    c_api.TF_GetCode(self.status.status))tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.During handling of the above exception, another exception occurred:Traceback (most recent call last):  File "eval.py", line 146, in <module>    tf.app.run()  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 124, in run    _sys.exit(main(argv))  File "eval.py", line 142, in main    FLAGS.checkpoint_dir, FLAGS.eval_dir)  File "/home/mm/models/research/object_detection/evaluator.py", line 240, in evaluate    save_graph_dir=(eval_dir if eval_config.save_graph else ''))  File "/home/mm/models/research/object_detection/eval_util.py", line 407, in repeated_checkpoint_run    save_graph_dir)  File "/home/mm/models/research/object_detection/eval_util.py", line 286, in _run_checkpoint_once    result_dict = batch_processor(tensor_dict, sess, batch, counters)  File "/home/mm/models/research/object_detection/evaluator.py", line 183, in _process_batch    result_dict = sess.run(tensor_dict)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 895, in run    run_metadata_ptr)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1128, in _run    feed_dict_tensor, options, run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1344, in _do_run    options, run_metadata)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/client/session.py", line 1363, in _do_call    raise type(e)(node_def, op, message)tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.Caused by op 'FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D', defined at:  File "eval.py", line 146, in <module>    tf.app.run()  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/platform/app.py", line 124, in run    _sys.exit(main(argv))  File "eval.py", line 142, in main    FLAGS.checkpoint_dir, FLAGS.eval_dir)  File "/home/mm/models/research/object_detection/evaluator.py", line 161, in evaluate    ignore_groundtruth=eval_config.ignore_groundtruth)  File "/home/mm/models/research/object_detection/evaluator.py", line 72, in _extract_prediction_tensors    prediction_dict = model.predict(preprocessed_image, true_image_shapes)  File "/home/mm/models/research/object_detection/meta_architectures/ssd_meta_arch.py", line 334, in predict    preprocessed_inputs)  File "/home/mm/models/research/object_detection/models/ssd_mobilenet_v1_feature_extractor.py", line 112, in extract_features    scope=scope)  File "/home/mm/models/research/slim/nets/mobilenet_v1.py", line 232, in mobilenet_v1_base    scope=end_point)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/framework/python/ops/arg_scope.py", line 182, in func_with_args    return func(*args, **current_args)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/contrib/layers/python/layers/layers.py", line 1057, in convolution    outputs = layer.apply(inputs)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/base.py", line 762, in apply    return self.__call__(inputs, *args, **kwargs)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/base.py", line 652, in __call__    outputs = self.call(inputs, *args, **kwargs)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/layers/convolutional.py", line 167, in call    outputs = self._convolution_op(inputs, self.kernel)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 838, in __call__    return self.conv_op(inp, filter)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 502, in __call__    return self.call(inp, filter)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/nn_ops.py", line 190, in __call__    name=self.name)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 639, in conv2d    data_format=data_format, dilations=dilations, name=name)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper    op_def=op_def)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 3160, in create_op    op_def=op_def)  File "/usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", line 1625, in __init__    self._traceback = self._graph._extract_stack()  # pylint: disable=protected-accessResourceExhaustedError (see above for traceback): OOM when allocating tensor with shape[1,32,150,150] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc     [[Node: FeatureExtractor/MobilenetV1/MobilenetV1/Conv2d_0/Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Preprocessor/sub, FeatureExtractor/MobilenetV1/Conv2d_0/weights/read)]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.     [[Node: Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1/_469 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1068_Postprocessor/BatchMultiClassNonMaxSuppression/MultiClassNonMaxSuppression/ClipToWindow/Gather/Gather_1", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info.

在启动eval.py之前,TF训练已经提前分配了所有GPU内存,因此我无法弄清楚如何同时运行这两个脚本,或者至少让ODA在特定间隔内运行评估。

因此,首先,评估是否可以与训练同时运行?如果可以,如何操作?

系统信息

我使用的模型的顶级目录是什么:object_detection

我是否编写了自定义代码:还没有…

操作系统平台和发行版:Linux Ubuntu 16.04 LTS

TensorFlow是从哪里安装的(源码还是二进制文件):pip3 tensorflow-gpu

TensorFlow版本(使用以下命令):1.5.0

CUDA/cuDNN版本:9.0/7.0

GPU型号和内存:GTX 1080, 8Gb


回答:

为了强制评估作业在CPU上运行(并防止它占用宝贵的GPU内存),创建一个虚拟环境,安装支持GPU的tensorflow,用于训练(例如命名为virtual_tf_gpu),再创建另一个虚拟环境,安装不支持GPU的tensorflow(例如命名为virtual_tf)。在两个独立的终端窗口中激活这两个虚拟环境,并在支持GPU的环境中开始训练,在支持CPU的环境中开始评估。

祝你好运!!!

Related Posts

Keras Dense层输入未被展平

这是我的测试代码: from keras import…

无法将分类变量输入随机森林

我有10个分类变量和3个数值变量。我在分割后直接将它们…

如何在Keras中对每个输出应用Sigmoid函数?

这是我代码的一部分。 model = Sequenti…

如何选择类概率的最佳阈值?

我的神经网络输出是一个用于多标签分类的预测类概率表: …

在Keras中使用深度学习得到不同的结果

我按照一个教程使用Keras中的深度神经网络进行文本分…

‘MatMul’操作的输入’b’类型为float32,与参数’a’的类型float64不匹配

我写了一个简单的TensorFlow代码,但不断遇到T…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注