我目前正在尝试根据这篇论文编写注意力机制:“Effective Approaches to Attention-based Neural Machine Translation”, Luong, Pham, Manning (2015)。(我使用的是带有点积分数的全局注意力)。
然而,我不确定如何将LSTM解码器的隐藏状态和输出状态输入进去。问题在于,在时间t时,LSTM解码器的输入依赖于我需要使用t-1时刻的输出和隐藏状态计算的量。
这是代码的相关部分:
with tf.variable_scope('data'): prob = tf.placeholder_with_default(1.0, shape=()) X_or = tf.placeholder(shape = [batch_size, timesteps_1, num_input], dtype = tf.float32, name = "input") X = tf.unstack(X_or, timesteps_1, 1) y = tf.placeholder(shape = [window_size,1], dtype = tf.float32, name = "label_annotation") logits = tf.zeros((1,1), tf.float32)with tf.variable_scope('lstm_cell_encoder'): rnn_layers = [tf.nn.rnn_cell.LSTMCell(size) for size in [hidden_size, hidden_size]] multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers) lstm_outputs, lstm_state = tf.contrib.rnn.static_rnn(cell=multi_rnn_cell,inputs=X,dtype=tf.float32) concat_lstm_outputs = tf.stack(tf.squeeze(lstm_outputs)) last_encoder_state = lstm_state[-1]with tf.variable_scope('lstm_cell_decoder'): initial_input = tf.unstack(tf.zeros(shape=(1,1,hidden_size2))) rnn_decoder_cell = tf.nn.rnn_cell.LSTMCell(hidden_size, state_is_tuple = True) # 计算h_1的隐藏和输出 for index in range(window_size): output_decoder, state_decoder = tf.nn.static_rnn(rnn_decoder_cell, initial_input, initial_state=last_encoder_state, dtype=tf.float32) # 计算源输出向量的分数 scores = tf.matmul(concat_lstm_outputs, tf.reshape(output_decoder[-1],(hidden_size,1))) attention_coef = tf.nn.softmax(scores) context_vector = tf.reduce_sum(tf.multiply(concat_lstm_outputs, tf.reshape(attention_coef, (window_size, 1))),0) context_vector = tf.reshape(context_vector, (1,hidden_size)) # 计算tilda隐藏状态 \tilde{h}_t=tanh(W[c_t, h_t]+b_t) concat_context = tf.concat([context_vector, output_decoder[-1]], axis = 1) W_tilde = tf.Variable(tf.random_normal(shape = [hidden_size*2, hidden_size2], stddev = 0.1), name = "weights_tilde", trainable = True) b_tilde = tf.Variable(tf.zeros([1, hidden_size2]), name="bias_tilde", trainable = True) hidden_tilde = tf.nn.tanh(tf.matmul(concat_context, W_tilde)+b_tilde) # hidden_tilde是[1*64] # 更新到下一个时间步 initial_input = tf.unstack(tf.reshape(hidden_tilde, (1,1,hidden_size2))) last_encoder_state = state_decoder # 预测目标 W_target = tf.Variable(tf.random_normal(shape = [hidden_size2, 1], stddev = 0.1), name = "weights_target", trainable = True) logit = tf.matmul(hidden_tilde, W_target) logits = tf.concat([logits, logit], axis = 0) logits = logits[1:]
循环内的部分是我不确定的。当我覆盖变量”initial_input”和”last_encoder_state”时,TensorFlow是否会记住计算图?
回答:
我认为如果你使用tf.contrib.seq2seq.AttentionWrapper
及其实现之一:BahdanauAttention
或LuongAttention
,你的模型将会简化很多。
这样,你就可以在单元级别上连接注意力向量,使得单元输出在应用注意力之后就已经是最终结果。来自seq2seq教程的示例:
cell = LSTMCell(512)attention_mechanism = tf.contrib.seq2seq.LuongAttention(512, encoder_outputs)attn_cell = tf.contrib.seq2seq.AttentionWrapper(cell, attention_mechanism, attention_size=256)
请注意,这样你就不需要window_size
的循环了,因为tf.nn.static_rnn
或tf.nn.dynamic_rnn
会实例化带有注意力的单元。
关于你的问题:你应该区分Python变量和TensorFlow图节点:你可以将last_encoder_state
赋值给不同的张量,原始图节点不会因为这个操作而改变。这很灵活,但也可能在结果网络中造成误导 – 你可能认为你将LSTM连接到一个张量,但实际上是另一个。一般来说,你不应该这样做。