查找正确和错误分类的数据

我想找到在应用多项式朴素贝叶斯分类算法后成功分类和未被分类的原始数据。例如,在应用多项式朴素贝叶斯分类后,我得到了88%的准确率。我想知道那12%未被分类的数据,以及那88%被正确分类的数据。提前感谢。

我的数据集:

+----------------------+------------+
| Details              | Category   |
+----------------------+------------+
| Any raw text1        | cat1       |
+----------------------+------------+
| any raw text2        | cat1       |
+----------------------+------------+
| any raw text5        | cat2       |
+----------------------+------------+
| any raw text7        | cat1       |
+----------------------+------------+
| any raw text8        | cat2       |
+----------------------+------------+
| Any raw text4        | cat4       |
+----------------------+------------+
| any raw text5        | cat4       |
+----------------------+------------+
| any raw text6        | cat3       |
+----------------------+------------+

我的代码:

import pandas as pd
import numpy as np
import scipy as sp
from sklearn.naive_bayes import MultinomialNB
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt  
from sklearn.model_selection import train_test_split
data= pd.read_csv('mydat.xls', delimiter='\t',usecols=['Details','Category'],encoding='utf-8')
target_one=data['Category']
target_list=data['Category'].unique()         
x_train, x_test, y_train, y_test = train_test_split(data.Details, data.Category, random_state=42)
vect = CountVectorizer(ngram_range=(1,2))
#converting traning features into numeric vector
X_train = vect.fit_transform(x_train.values.astype('U'))
#converting training labels into numeric vector
X_test = vect.transform(x_test.values.astype('U'))
# start = time.clock()
mnb = MultinomialNB(alpha =0.13)
mnb.fit(X_train,y_train)
result= mnb.predict(X_test)
# mnb.predict_proba(x_test)[0:10,1]
accuracy_score(result,y_test)

回答:

只需遍历你的数据:

for i in range(len(y_test)):
    if result[i] == y_test[i]:
        print("CORRECT: ", X_test[i])
    else:
        print("INCORRECT: ", X_test[i])

你可以将它们添加到两个不同的列表中,或者只打印ID,或者根据需要进行其他操作。

Related Posts

使用LSTM在Python中预测未来值

这段代码可以预测指定股票的当前日期之前的值,但不能预测…

如何在gensim的word2vec模型中查找双词组的相似性

我有一个word2vec模型,假设我使用的是googl…

dask_xgboost.predict 可以工作但无法显示 – 数据必须是一维的

我试图使用 XGBoost 创建模型。 看起来我成功地…

ML Tuning – Cross Validation in Spark

我在https://spark.apache.org/…

如何在React JS中使用fetch从REST API获取预测

我正在开发一个应用程序,其中Flask REST AP…

如何分析ML.NET中多类分类预测得分数组?

我在ML.NET中创建了一个多类分类项目。该项目可以对…

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注