我在使用scikit-learn的RandomizedSearchCV函数进行实验。一些学术论文声称,与进行完整的网格搜索相比,随机搜索能够提供“足够好”的结果,并且节省大量时间。
令人惊讶的是,在一次尝试中,RandomizedSearchCV的表现比GridSearchCV更好。我认为GridSearchCV应该是详尽的,因此结果应该比RandomizedSearchCV好,假设它们搜索的是相同的网格范围。
对于相同的数据集和大致相同的设置,GridSearchCV返回了以下结果:
最佳交叉验证准确率:0.7642857142857142
测试集得分:0.725
最佳参数:’C’: 0.02
而RandomizedSearchCV返回了以下结果:最佳交叉验证准确率:0.7428571428571429
测试集得分:0.7333333333333333
最佳参数:’C’: 0.008
对我来说,0.733的测试得分比0.725要好,并且RandomizedSearchCV的测试得分与训练得分之间的差异更小,据我所知,这意味着过拟合更少。
那么为什么GridSearchCV返回的结果更差呢?
GridSearchCV代码:
def linear_SVC(x, y, param, kfold): param_grid = {'C':param} k = KFold(n_splits=kfold, shuffle=True, random_state=0) grid = GridSearchCV(LinearSVC(), param_grid=param_grid, cv=k, n_jobs=4, verbose=1) return grid.fit(x, y)#high C means more chance of overfittingstart = timer()param = [i/1000 for i in range(1,1000)]param1 = [i for i in range(1,101)]param.extend(param1)#progress = progressbar.bar.ProgressBar()clf = linear_SVC(x=x_train, y=y_train, param=param, kfold=3)print('LinearSVC:')print('Best cv accuracy: {}' .format(clf.best_score_))print('Test set score: {}' .format(clf.score(x_test, y_test)))print('Best parameters: {}' .format(clf.best_params_))print()duration = timer() - startprint('time to run: {}' .format(duration))
RandomizedSearchCV代码:
from sklearn.model_selection import RandomizedSearchCVdef Linear_SVC_Rand(x, y, param, kfold, n): param_grid = {'C':param} k = StratifiedKFold(n_splits=kfold, shuffle=True, random_state=0) randsearch = RandomizedSearchCV(LinearSVC(), param_distributions=param_grid, cv=k, n_jobs=4, verbose=1, n_iter=n) return randsearch.fit(x, y)start = timer()param = [i/1000 for i in range(1,1000)]param1 = [i for i in range(1,101)]param.extend(param1)#progress = progressbar.bar.ProgressBar()clf = Linear_SVC_Rand(x=x_train, y=y_train, param=param, kfold=3, n=100)print('LinearSVC:')print('Best cv accuracy: {}' .format(clf.best_score_))print('Test set score: {}' .format(clf.score(x_test, y_test)))print('Best parameters: {}' .format(clf.best_params_))print()duration = timer() - startprint('time to run: {}' .format(duration))
回答:
首先,试着理解这个:https://stats.stackexchange.com/questions/49540/understanding-stratified-cross-validation
所以你应该知道StratifiedKFold比KFold更好。
在GridSearchCV和RandomizedSearchCV中都使用StratifiedKFold。确保设置”shuffle = False
“,并且不使用”random_state
“参数。这样做的作用是:你使用的数据集不会被打乱,因此每次训练时你的结果不会发生变化。你可能会得到你期望的结果。
GridSearchCV代码:
def linear_SVC(x, y, param, kfold): param_grid = {'C':param} k = StratifiedKFold(n_splits=kfold) grid = GridSearchCV(LinearSVC(), param_grid=param_grid, cv=k, n_jobs=4, verbose=1) return grid.fit(x, y)
RandomizedSearchCV代码:
def Linear_SVC_Rand(x, y, param, kfold, n): param_grid = {'C':param} k = StratifiedKFold(n_splits=kfold) randsearch = RandomizedSearchCV(LinearSVC(), param_distributions=param_grid, cv=k, n_jobs=4, verbose=1, n_iter=n) return randsearch.fit(x, y)