我在Azure机器学习工作室中创建了一个新实验,通过Execute R Script
模块能够从初始数据集中挖掘关联规则。对于这个实验,我使用了R版本Microsoft R Open 3.2.2
我在Azure ML上的实验中使用的函数,首先在R Studio中编写并测试过,在那里我没有任何问题。这是我的实验结构:
这是插入到Azure ML模块中的代码的一部分,在R Studio中可以正常工作:
# Map 1-based optional input ports to variablesdataset1 <- maml.mapInputPort(1) # class: data.framelibrary("arules")library("sqldf")x <- sqldf('select ID_Ordine, AnnoOrdine, ZonaCommerciale, Modello, SUM(Qta) as Qta from dataset1 group by ID_Ordine, Modello order by ID_Ordine')a_list1 <- transform(x, Modello = as.factor(Modello), ID_Ordine = as.factor(ID_Ordine)) transactions <- as(split(x[,"Modello"], x[,"ID_Ordine"]), "transactions")rules <- sort(apriori(transactions, parameter = list(supp = 0.1, conf = 0.1, target = "rules", maxlen = 5)), by="lift")gi <- generatingItemsets(rules) #remove inverse duplicated rulesd <- which(duplicated(gi)) #remove inverse duplicated rulesrules <- rules[-d] #remove inverse duplicated rules#create a dataframe to be used as outputresult <- data.frame(label_lhs = labels(lhs(rules)), label_rhs = labels(rhs(rules)), count = quality(rules)["count"]) # Select data.frame to be sent to the output Dataset portmaml.mapOutputPort("result");
如果我从代码中排除这一行count = quality(rules)["count"]
(将与计数相关的列导入输出数据框的语句),实验可以正常工作,但当我也导入计数列时,实验的执行会给我以下错误:
有人知道如何修复这个错误,或者知道从Azure ML识别的arules对象中选择计数列的替代方法吗?
感谢任何建议
回答:
count
列不是由arules
包的这个版本中的apriori()
函数计算的,所以我通过使用计算支持的逆公式来计算它:
#create a dataframe to be used as outputresult <- data.frame(label_lhs = labels(lhs(rules)), label_rhs = labels(rhs(rules)), count = quality(rules)$support*length(transactions))
因为支持是通过以下公式计算的:
support = (number of transactions with A&B)/(number of total transactions)