在我的模型文件中,我创建了一个多层RNN,如下所示:
#RNN初始化部分
cell = tf.contrib.rnn.GRUCell(self.global_dim, kernel_initializer=self.xavier_initializer)
self.GRU = tf.contrib.rnn.MultiRNNCell([cell for _ in range(self.rnn_layers)])
我在另一个函数中调用这个单元:
def RNN(self):
state = self.initRNNState()
inputs = tf.reshape(self.itemVec, [self.num_steps, self.batch_size, self.global_dim])
hiddenState = []
for time_step in range(self.num_steps):
_, state = self.GRU(inputs[time_step], state)
hiddenState.append(tf.reshape(state[-1], [self.global_dim])) #存储最后一层
return tf.convert_to_tensor(hiddenState)
在我的主文件中,我尝试了sess.run(tf.global_variables_initializer())
和sess.run(tf.local_variables_initializer())
,但得到了相同的错误:
FailedPreconditionError (see above for traceback): Attempting to use uninitialized value multi_rnn_cell/cell_0/gru_cell/gates/kernel
[[Node: multi_rnn_cell/cell_0/gru_cell/gates/kernel/read = Identity[T=DT_FLOAT, _class=["loc:@multi_rnn_cell/cell_0/gru_cell/gates/kernel"], _device="/job:localhost/replica:0/task:0/device:GPU:0"](multi_rnn_cell/cell_0/gru_cell/gates/kernel)]]
[[Node: Neg/_11 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_1304_Neg", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]
我想知道为什么我的GRU单元没有被初始化。
回答:
你没有展示完整的代码,但我确定你是先调用sess.run(tf.global_variables_initializer())
,然后再调用RNN()
方法。这样做是行不通的,因为RNN()
在向图中添加新的节点,这些节点也需要像其他节点一样被初始化。
解决方案:确保你创建了完整的计算图,然后再调用初始化器。